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Statistical spherical cell model for the elastic

properties of particulate-filled composite

materials
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The single spherical cell model of F. J. Guild et al. (J. Mater. Sci. Lett. 13 (1994) 10) is
extended to take into account the statistical spatial distribution of the inclusions in
particulate-filled composite materials. Using this model, the elastic properties of a
glass-bead filled epoxy composite material were calculated. When compared with the
single spherical cell model, we found that the statistical spherical cell model gave
predictions consistently closer to the experimental values for both the Young’s modulus
and the Poisson’s ratio. C© 2002 Kluwer Academic Publishers

1. Introduction
Advance in technology has lead to the development of
sophisticated particulate-filled composite materials. A
variety of them has already found wide range of usage
in our daily life. However, their applications can only
be properly exploited when their physical behaviors,
in particular, the mechanical behaviors, are well under-
stood. For this purpose, predictive models can provide
a way to understand the mechanisms behind the phys-
ical behaviors. There have been numerous models for
the description of the overall properties of these com-
posites. However, not many of these models have taken
into account the spatial distribution of the particles in
the composite.

In 1988, Davy and Guild [1] applied finite element
analysis upon an axisymmetric cylindrical cell model
containing a single spherical inclusion. The fact that
there are many inclusions were simulated by adding
suitable constraints along the boundary of the cylindri-
cal cell, and incorporating hard-core Gibbs point pro-
cess for the distribution of the centers of the spherical
inclusions. The bulk linear elastic behaviors of glass-
bead filled polymer of filler volume fraction up to ap-
proximately 50% were calculated under the condition
of equal stress or equal strain, which should give the
upper or the lower bounds for the true values respec-
tively. Good agreement in Young’s modulus was found
between the experimental and the calculated values.
While reasonable agreement in Poisson’s ratio was ob-
tained at low filler volume fractions, the agreement was
less satisfactory at higher volume fractions. The reason
for the increased discrepancies at higher volume frac-
tions, as the authors believed, was that the cylindrical
model could not correctly reflect the isotropy of the me-
chanical properties of the overall composite material.
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Guild et al. [2] applied finite element method to a sin-
gle spherical cell model to predict the mechanical prop-
erties of rubber-toughened epoxy polymer. The filler
volume fraction was varied from 1.07% to 40.5% by
changing the ratio of the radius of the spherical cell
to that of the spherical inclusion at its center. Internal
stresses and nodal displacements were calculated with
the spherical cell under unidirectional loading and the
multiple-inclusions effect was simulated by constrain-
ing the deformed outer surface of the spherical cell and
the interface between the matrix and the inclusion to
be perfect ellipsoids. Elastic constants such as the bulk
modulus, Young’s modulus and Poisson’s ratio were
calculated and compared with the predicted values from
the previously mentioned cylindrical cell model.

Then in [3], Guild et al. applied the same single spher-
ical cell model to investigate the stress distributions
around and within a rubber particle or a void embed-
ded in a matrix of epoxy polymer. The bulk modulus
values for various volume fractions of the inclusion
phase and the manifestations of the stress distribution
on the toughening mechanism were considered. Good
agreement was revealed between the predicted and ex-
perimental values of a range of mechanical properties
of the rubber material.

In this work, Guild’s single spherical cell model is
extended to a statistical spherical cell model. Using
finite element analysis, quantitative mechanical prop-
erties were predicted and compared with experimental
data.

2. Calculation of elastic properties
For easier reference, we review briefly the theory of
Davy and Guild [1] in the following. A particulate-filled
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composite material can be divided into various Voronoi
cells, each containing one inclusion. A Voronoi cell is
defined as the region containing one inclusion such that
any point in this region is closer to this inclusion than
to any other inclusions. Suppose Pj ( j = 1 to N ) are
the centers of the spherical inclusions and X j (ω) be the
distance from Pj to the boundary of its own Voronoi
cell in the direction ω, then the random variable X (ω)
corresponding to a “typical center” is defined to have
the following probability function:

P(X (ω) ≤ x) = ξ (�p j ∈V I j (x))

N
(1)

where ξ ( ) denotes the expectation value of the enclosed
quantity, V is the volume of the composite and I j (x)
is unity when X j (ω) is not greater than x , and is zero
otherwise. When X (ω) is averaged over ω, the resulting
value is denoted as X , which can be considered as the
half-interparticle distance.

For a random distribution of non-overlapping spheres
of radius r , X satisfies the Gibb’s hard-core point dis-
tribution:

P(X > x) ≈ exp(−k(x3/r3 + 3r/x − 4)) (2)

where k is a function of the volume fraction p of the
inclusions given by:

∫ ∞

1
y2 exp

(
−k

(
y3 + 3

y
− 4

))
dy = 1 − p

3p
(3)

In our statistical spherical cell model, X is taken to be
the radius of the spherical cell and hence each cell has
a radius R equals to X and has a spherical inclusion of
radius r at its center.

The squared coefficient of variance of the ratio
R3/r3, denoted by CV (R3/r3), can be calculated by:

CV (R3/r3) = p2ξ (R6/r6) − 1 (4)

where ξ (X6/r6) is given by:

ξ (X6/r6) = 1+2
∫ 1

0
y−3 exp[−k(y−1+3y1/3−4)]dy

(5)
The values of CV (R3/r3), together with the k values,
for volume fraction p varying from 0.05 up to 0.70 are
shown in Table I. Here R/r = (1/p)1/3. The values for
volume fractions above 0.5 are not shown in Davy and
Guilds [1] and the value of k at p = 0.5 is misprinted
in their paper.

For a given volume fraction p, most spherical cells in
the statistical model will have their volume fractions of
inclusion close to p. Therefore, a spherical cell, whose
volume fraction of inclusion equals to that of the com-
posite material, with the radius ratio denoted by Rp/r ,
can be selected as the representative sphere. The distri-
bution function of the inter-particle distances between it
and the other spheres satisfies the statistical distribution
function (2). Employing this statistical distribution, the
average stress and strain of the composite is found by a

TABLE I k values and CV (R3/r3) values for the spherical cell model

Volume fraction (p) k R/r CV (R3/r3)

0.05 0.0578 2.7144 0.7755
0.10 0.1319 2.1544 0.6272
0.15 0.2258 1.8821 0.5111
0.20 0.3446 1.7100 0.4140
0.25 0.4958 1.5874 0.3405
0.30 0.6894 1.4938 0.2767
0.35 0.9401 1.4190 0.2235
0.40 1.2694 1.3572 0.1788
0.45 1.7110 1.3050 0.1404
0.50 2.3088 1.2600 0.1104
0.55 3.1483 1.2205 0.0846
0.60 4.3615 1.1856 0.0634
0.65 6.1896 1.1544 0.0461
0.70 9.0949 1.1262 0.0322

volumetric averaging. Using finite element analysis, the
internal stresses and displacements can be determined,
and hence the Young’s modulus and the Poisson’s ratio
of this representative spherical cell can be found. Sup-
pose f is a property function of the radius ratio R/r ,
according to [1], the statistically corrected expecta-
tion value of f , ξ ( f ) can be found by the following
approximation:

ξ ( f ) ≈ f p + d( f ) (6)

where f p is the value of f at radius ratio Rp/r , and

d( f ) = 1

2

(
R3

p/r3)(R3 f/r3)′′CV (R3/r3) (7)

The second derivative in Equation 7 can be approxi-
mated by the finite difference:

(R3 f/r3)′′ = (
f1 R3

1/r3 + f2 R3
2/r3 − 2 f p R3

p/r3)/�2

(8)

where � is a small value, f1 is the value of the property
function when

(R1/r )3 = (Rp/r )3 − � (9)

and f2 the value of the property function when

(R2/r )3 = (Rp/r )3 + � (10)

Using Equation 6, we can find the statistically cor-
rected, expectation value of f . The choice of the value
for � is somewhat arbitrary, as long as it is small enough
when compared with the value of (Rp/r )3. We have
used � = 0.1 in our calculations.

In this study, we take f to be the Young’s modulus
E or the ratio ν/E , where ν is the Poisson ratio. As in-
dicated in reference [1], the effective Young’s modulus
is then a weighted harmonic mean of the Young mod-
uli of the component spheres and the effective value of
the ratio ν/E is a weighted mean of the ratios of the
individual spheres. The representative spherical cell is
shown in Fig. 1. Due to symmetry, axisymmetric el-
ements can be used and we need only consider one-
quarter of the cross-section, labeled by OAB in Fig. 1.
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Figure 1 A typical spherical cell.

The mesh for finite element analysis is shown in Fig. 2.
The elements used are all 8-node quadrilateral axisym-
metric elements except 6-node triangular axisymmetric
elements were used around the left lower corner O. The
total number of elements is 1024 and the total number
of nodes is 3137.

Fig. 3 shows the loading and boundary conditions.
The loading condition is such that the cell is under
equal-strain deformation along the arc AB due to the
load in the y direction. The shape OAB is deformed
into OA′B′, which must be part of a perfect ellipse
since the overall composite material is isotropic. This
shape would not be attained from application of the
load alone and constraints must be applied to force this

Figure 2 Mesh for finite element analysis.

Figure 3 Loading and boundary conditions for the spherical cell model.

shape. The application of these constraints models the
interactions between neighboring spheres.

When the spherical cell is prescribed with tensile
strain ε in the y direction, in order to ensure that the
deformed shape must be a perfect ellipsoid, we require
that the displacements �x and �y in the x and y di-
rections respectively for points on the surface of the
spherical cell satisfy:

�y = εy (17)

�x = −νεx (18)

where ν is the Poisson’s ratio of the composite spherical
cell. However, as the value of ν is unknown, we have
used the following algorithm to find it.
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1. Prescribe to nodes displacements �y = 0 and
�x = 0.

2. Find the bulk modulus of the spherical cell. This
can be done by the application of a small constant hy-
drostatic pressure on the outer surface of the cell. Using
finite element analysis, we can find the bulk modulus
K using

K = Hydrostatic pressure

�V/V

where �V/V = 1 −
(

1 − �R

R

)3

≈ 3
�R

R
3. Prescribe a small strain value ε, say 0.001, to ev-

ery outer surface node in Fig. 2 and calculate the cor-
responding y-direction displacement by Equation 17.

4. (a) (Only to be done for the first time of prescrib-
ing displacements of boundary nodes.) Establish a set
of “multiple-node connectivity” equations along the
outer surface nodes in the x-direction. Or (b) (Should be
done when boundary displacements are not newly pre-
scribed.) Prescribe the x-displacements in every outer
surface nodes by Equation 18, using the νi+1 value ob-
tained from Step 6.

5. After the finite element analysis, we can find the
Young’s modulus Ei (i = 1,2, . . . ) by averaging the re-
action along the plane OA′.

6. Using νi+1 = 1
2 (1 − Ei

3K ), we get a new ν value.
7. Repeat Step 4(b) to Step 6 until the successive

values of ν are close enough. The “multiple-node con-
nectivity” equations to be used in Step 4(a) can be found
by the following.

The original spherical shape of the cell can be de-
scribed, in parametric form{

x = R cos(θ )
y = R sin(θ ) (19)

where R is the radius of the sphere and θ is the polar
angle. Suppose (η, ξ ) is a point on the deformed cell,
which must have the shape of a perfect ellipse, we have{

η = aR cos(θ )
ξ = bR sin(θ ) (20)

where a, b are constants.
By subtracting Equation 19 from 20, we get:{

�x = R(a − 1) cos(θ )
�y = R(b − 1) sin(θ ) (21)

Because the displacements for every point in the sphere
satisfy Equation 21, by arbitrarily choosing two points
on the ellipse, say point 1 and point 2, it is easy to show
that: {

�x1 cos(θ2) = �x2 cos(θ1)
�y1 sin(θ2) = �y2 sin(θ1) (22)

Suppose there are a series of nodes with node numbers 1
to N along the outer boundary of the ellipse, we get:

{
�xi cos(θi+1) = �xi+1 cos(θi )
�yi sin(θi+1) = �yi+1 sin(θi )

(23)

where i = 1 to N − 1.

The set of Equations 23 define the “multi-point con-
nectivity” constraints among the nodes on the outer
boundary and are used in finite element analysis.

3. Results
The experimental data we studied was for a glass bead
filled epoxy resin polymer composite [5]. The Young’s
modulus for the glass bead and the epoxy resin are
76 GPa and 3.01 GPa respectively. The Poisson’s ratios
are 0.23 and 0.394, respectively. Using these values,

Figure 4 Young’s modulus predicted by the statistical spherical cell
model (cross: experimental data with error bars [5]; triangle: single spher-
ical model; square: statistical spherical cell model). The error bars for
the experimental data are too small to be shown.

Figure 5 Poisson’s ratio predicted by the statistical spherical cell model
(cross: experimental data [5] with error bars; triangle: single spherical
model; square: statistical spherical cell model).
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the Young’s modulus predicted by the single spherical
cell model is shown in Fig. 4. The statistical spherical
cell model and the experimental data are shown for in-
clusion volume fractions up to 0.45. The experimental
data are all higher than the values predicted by the single
spherical cell model, with or without statistical correc-
tion. Nevertheless, both models fit reasonably well with
the experimental data. However, from the figure, we
can see that the statistical corrected model shows better
agreement with experimental data when the filler vol-
ume fraction becomes higher. In Fig. 5, the Poisson’s
ratio predicted by the single spherical cell model, the
values from the statistical spherical cell model and the
experimental data are shown. As before, both models
are satisfactory. Again, at high filler volume fractions,
the values given by the model with statistical correction
are closer to the experimental data than those without
statistical correction.

4. Conclusion
As pointed out by Guild and Kinloch [3], in the single
spherical cell model, the interaction between the inclu-
sions has been taken into account partially and indi-
rectly by the incorporation of the boundary conditions.
Our statistical spherical cell model, in addition, also
takes into account the inter-particle distance distribu-
tion and hence has shown significant improvement in

its prediction ability, especially in the calculation of
the Poisson’s ratio values. Although this work has only
demonstrated its advantage in elastic properties cal-
culation, it is quite clear that the method may also
be used in dealing with other interesting or important
properties.
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